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Abstract

Hot weather increases risk of mortality. Previous studies used different sets of weather variables to 

characterize heat stress, resulting in variation in heat-mortality- associations depending on the 

metric used. We employed a statistical learning method – random forests – to examine which of 

various weather variables had the greatest impact on heat-related mortality. We compiled a 

summertime daily weather and mortality counts dataset from four U.S. cities (Chicago, IL; 

Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. A variety of weather 

variables were ranked in predicting deviation from typical daily all-cause and cause-specific death 

counts. Ranks of weather variables varied with city and health outcome. Apparent temperature 

appeared to be the most important predictor of heat-related mortality for all-cause mortality. 

Absolute humidity was, on average, most frequently selected one of the top variables for all-cause 

mortality and seven cause-specific mortality categories. Our analysis affirms that apparent 

temperature is a reasonable variable for activating heat alerts and warnings, which are commonly 

based on predictions of total mortality in next few days. Additionally, absolute humidity should be 

included in future heat-health studies. Finally, random forests can be used to guide choice of 

weather variables in heat epidemiology studies.
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1. Introduction

Heat waves are projected to occur more frequently, more intensely and to last longer as a 

consequence of climate change (Meehl and Tebaldi 2004). Epidemiological studies have 

shown that heat waves are associated with elevated risk of mortality, hospital admissions, 

heat stroke, heat exhaustion, cardiovascular and respiratory diseases (Kovats and Hajat 

2007). Previous heat-related epidemiological studies have characterized heat or heat waves 

by using a single temperature metric (e.g., daily mean/minimum/maximum temperature), or 

a composite index combining temperature and relative humidity, or a more sophisticated 

index requiring substantial meteorological knowledge (e.g., spatial synoptic classification) 

(Hajat et al. 2010; Barnett et al. 2010). However, these weather metrics may not characterize 

human exposures to extreme heat very well since biometeorological studies have shown that 

human body temperature is related to many weather variables, e.g., temperature, relative 

humidity, solar radiation, barometric pressure, wind speed, and others (Steadman 1979a, b, 

1984). Also, people usually spend the majority of their time indoors, e.g., Americans spend 

86.9% of their time indoors on average (Klepeis et al. 2001). Some variables (e.g. absolute 

humidity) penetrate better than others. Moreover, several metrics are typically used for each 

weather variable mentioned above, e.g., daily mean, minimum, and maximum temperature, 

and no consensus exists on which measure of temperature has the most influence on 

mortality. Two likely reasons are that there is no single measure and that using temperature 

alone is not sufficient to characterize heat exposures. This fact contributes to the difficulty of 

comparing various studies and inconsistencies in the heat-health associations found in 

addition to differences in culture, housing and exposure across regions and populations. 

Identifying which variables are most consistently predictive of health across multiple cities 

could aid epidemiologic research. Furthermore, identifying the local weather conditions 

most predictive of heat-related mortality could inform design of heat wave and heat health 

warning systems by reducing the number of triggering metrics considered. Such information 

may guide local public health and weather service authorities to more effectively mobilize 

resources to prevent adverse health effects during hot weather.

A small number of studies have examined the performance of different weather-related 

exposure metrics in estimating heat-mortality relationships; we describe two here. One 

study, (Metzger et al. 2010), suggested that the maximum heat index performed similarly to 

other metrics (maximum, minimum, and average temperature, and spatial synoptic 

classification) in estimating mortality risk during the summer for New York City. A multi-

city study examined the performance of mean, minimum and maximum temperature with 

and without humidity, and apparent temperature and the Humidex (a function of temperature 

and relative humidity) in predicting mortality using mortality and weather data from 107 

U.S. cities during 1987–2000 (Barnett et al. 2010). The measure of temperature most 

associated with mortality varied with city, season and age groups, but these different 

temperature measures had the same predictive ability, on average. Another multi-city study 

evaluated maximum temperature, dew point temperature and a few combinations of these 

two variables in 105 U.S. cities during 1987-2005 (Bobb et al., 2011). They reported that the 

best temperature measure varied by city.
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All these studies used either temperature predictors or temperature-humidity indices within 

the regression framework, and did not examine additional weather conditions 

simultaneously (e.g., absolute humidity and barometric pressure). Also, the generalized 

linear model (GLM) or generalized additive model (GAM) used in these prior studies does 

not have the ability to account for high-order interaction among covariates. Our prior work 

proposed a hybrid clustering method to classify potentially ‘dangerous’ heat based on four 

daily weather conditions: maximum/minimum temperature and maximum/minimum dew 

point (Zhang et al. 2012). Yet, even that approach did not take many weather variables into 

consideration simultaneously. Like studying multi-pollutant mixtures, properly accounting 

for the multiple weather conditions to which humans are exposed is a challenge for 

assessing heat-related health effects.

This study aims to evaluate many weather conditions simultaneously and identify the most 

important weather variables in predicting excess death counts associated with hot weather 

by evaluating their prediction performance. This analysis takes advantage of a recent 

advance in statistical learning methods: the random forests approach, and accounts for 

exposures to multiple weather conditions in a data-driven way. This approach reduces 

substantial scientific meteorological-related judgments while taking many weather 

conditions into consideration. It is important to note that this paper is not to demonstrate that 

random forests are an alternative method to GAM or GLM in heat-related epidemiological 

studies.

2. Methods

2.1 Data sources

This study uses daily mortality data and weather observations from four U.S. cities 

(Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. Death 

records were obtained from the National Center for Health Statistics. To prepare the data for 

analysis, we created daily counts of deaths, first for total, all-cause mortality and then for 

cause-specific mortality. International Classification of Disease tenth revision (ICD-10) 

codes were in use for the period 1998 - 2006. Daily total mortality excluded injuries and 

external causes (ICD-10 beginning with S through Z). Mortality counts were further 

classified as cardiovascular diseases (CVD; ICD-10 codes I01–I52), stroke (ICD-10 codes 

I60–I69), myocardial infarction (MI; ICD-10 codes I21–I22), congestive heart failure (CHF; 

ICD-10 codes I50), pneumonia (ICD-10 codes J12-J18), chronic obstructive pulmonary 

disease (COPD; ICD-10 codes J40–J44 and J47) and respiratory disease (ICD-10 codes J00-

J99).

We wanted to evaluate whether hot weather conditions would be associated with increased 

levels of daily mortality counts, compared to the expected levels for any given day, based on 

a long-term average. To define the generally expected level of daily mortality counts, we 

modeled mortality counts as a smooth function (a cubic spline) of day of the year (degrees 

of freedom = 5) while adjusting for day of week and year over the time period of our study 

(1998-2006).Day of the year indicates a seasonal trend, which has been assumed to be the 

same each year and has thus been coded as 1 to 365/366. The indicator variable for year 

enables control of long-term trends, if present. From this smooth function, we created a 
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single smooth function that represented the annual ‘expected’ pattern of daily mortality 

averaged over the entire 9 years of data. A smooth function was created for total, all-cause 

mortality as well as for the cause-specific mortality. Then, using the daily deaths predicted 

by this smooth function for a given calendar date (e.g., July 10), we calculated the difference 

between the observed daily and the ‘expected’ for the various categories of mortality. This 

variable can take on negative or positive values and we refer to it as deviation from typical 

daily mortality counts. We used this concept in our previous work to evaluate our proposed 

hybrid clustering method to identify potentially ‘dangerously’ hot days (Zhang et al. 2012).

Weather measurements from four cities were obtained from the National Climatic Data 

Center (NCDC, 2010). From this data, we created variables of daily minimum, mean and 

maximum temperature, dew point, apparent temperature, barometric pressure and absolute 

humidity. Each variable was calculated on the same day as, one day before, and two days 

before the deaths occurred. Besides these weather variables, calendar month as an additional 

variable was used to account for timing in season as a potential indicator of early season 

heat waves in the data analysis. Apparent temperature was derived using the equation from 

(Zanobetti and Schwartz 2008). The description of all variables is shown in Table 1.

2.2 Approach

We applied a machine learning method called random forests to select the most important 

variables among all available variables in predicting deviation from typical daily mortality 

counts. Random forests are an extension of regression tree methods. Before discussing the 

specifics of the analysis, we next provide an overview of these statistical methods.

A regression tree is a non-parametric statistical learning technique described by a tree-

structured algorithm (Faraway, 2006). Using this method, a dataset is partitioned in a 

recursive manner. This algorithm evaluates every possible division point of every predictor 

of the variable of interest to make a split in the data at each step, and the choice of a 

predictor variable and its value are determined by minimizing variance in predictions 

(Faraway, 2006). For example, our objective in this paper was to use weather variables as 

input to predict deviation from typical daily mortality counts. The basic idea is to partition 

the space of weather variables recursively into two smaller regions. At each step, the 

algorithm chose one of the weather variables and the value to split it on which better 

predicted deviation from typical daily mortality counts compared to other variables and 

values. In other words, the algorithm chose the most “dangerous” weather condition during 

each split. Each leaf or terminal node represents a partition region, characterized by a set of 

weather conditions associated with a deviation from typical expected mortality. Importantly, 

these conditions include potentially high order interactions among the predictors. (We 

present an example to illustrate the regression tree structure with terminal nodes in 

Supplemental Material, Figure S1). Regression tree methods are relatively straightforward to 

understand and implement, and can be used to find interaction effects among predictor 

variables, but its results are sensitive to small changes in the data, especially outliers 

(Faraway, 2006). The recursive nature of the regression tree method derives from the fact 

that it is performed on the most important predictors selected from the previous step.
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Random forests are a collection of classification and regression trees that can be used to 

predict values or categories of target variables (Breiman 2001). Each individual tree in the 

forest represents results from a specific regression tree (Breiman 2001). Each tree is 

constructed based on a bootstrap sample of a dataset and a random subset of predictors. A 

final classification decision is a majority vote or the weighted average of all individual trees. 

Random forests have shown better prediction performance compared to other classification 

and regression tree methods, and can deal with missing values and a combination of binary 

and continuous variables automatically (Breiman 2001). The importance of each predictor 

can also be quantified by assessing averaged prediction error across all random trees.

Random forests can allow for complicated interactions among highly correlated predictors, 

and can decrease prediction errors compared to traditional regression tree methods (Breiman 

2001) because results are averaged among all trees.

In this paper, various weather variables and metrics were assessed in predicting deviation 

from typical daily mortality counts using random forests: daily minimum/maximum 

temperature, dew point, barometric pressure and absolute humidity on the same day as, one 

day before, and two days before the deaths occurred. The most important weather variables 

were determined by the importance scores derived from random forests, which are 

quantified as the average percent increase in mean squared error. Note that the outputs of 

random forests (e.g., importance scores here) are different from GAM and GLM in heat-

related epidemiological studies which provide estimates of relative risk (e.g., percent change 

in mortality risk). In this analysis, the random forests approach took 20,000 bootstrap 

samples of summertime (May 1st to September 30th) weather and mortality data from each 

one of four cities, and each sample resulted in a tree. For each bootstrap sample, prediction 

error was derived by predicting the data not included in this bootstrap sample commonly 

called out-of-bag data, and the importance score of an independent variable was calculated 

by comparing the prediction errors from the permuted sample of that variable in the out-of-

bag data to those from the unpermuted sample of that variable. A concrete example of the 

permutation approach is as follows: When we used a bootstrap sample to construct a 

regression tree using weather variables and heat-related mortality in the study period, we 

randomly shuffled (permuted) the values of daily mean temperature and kept all other 

variables unchanged, and then created another regression tree using the shuffled values. 

Larger differences in importance scores between the models before and after permutation 

signified greater importance of the daily mean temperature in predicting the mortality 

outcome. Unlike some machine learning methods, random forests does not require 

validation on a test dataset because they construct variable importance measures and model 

performances (e.g., mean squared errors) using out-of-bag samples, which is almost 

equivalent to cross validation (Hastie et al., 2009).

We applied random forests to weather observations in four cities to examine whether the 

ranking of weather conditions that predict the deviation from typical daily mortality counts 

differed by city and if so, to identify the conditions that most consistently ranked high. 

Further, we examined whether the most mortality-predictive weather variables differed 

depending on the mortality causes. To accomplish this, we applied random forests to 

determine the most important weather variables predicting excess daily all-cause mortality 
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for four cities and cause-specific (cardiovascular diseases, stroke, myocardial infarction, 

congestive heart failure, pneumonia, chronic obstructive pulmonary disease and respiratory 

disease) mortality for all four cities.

Random forests and regression tree analyses were performed on the data for summer periods 

defined as May 1st to September 30th. They were run using the RandomForest package and 

the Tree package in the R statistical software (Liaw and Wiener 2002; R Development Core 

Team, 2012). The number of generated trees in the setting of random forests was set to 

20,000. We specified 15 as the number of variables randomly sampled at each split and five 

as the minimum size of terminal nodes according to the inventors' recommendations (Hastie 

et al. 2009). In addition, to calculate deviations from typical daily mortality counts, GAM 

models were fit using the “mgcv” R package (version 1.7-6) in the R statistical software 

(Wood, 2008).

We conducted a sensitivity analysis to examine whether the ranking patterns of most 

important variables varied with the degrees of freedom of day for the year in calculating 

expected level of daily mortality counts. We chose degrees of freedom of 2 and 10 for all-

cause mortality in four cities compared to 5 in our default setting.

3. Results

Table 1 shows that, among the four cities, Phoenix had the highest temperature and apparent 

temperature (average values of daily mean temperature/apparent temperature: 32.3 and 31.5 

°C, respectively), and the lowest dew point (average value of daily mean dew point: 8.2 °C) 

during the summertime in 1998 - 2006 (32.3, 31.5 and 8.2 °C Celsius, respectively). Phoenix 

also had the lowest barometric pressure and absolute humidity (average values of daily mean 

metrics: 970.5 × 102 Pa and 8.9 × 10-3 kg m-3) compared to other three cities. Chicago and 

Detroit had very similar weather conditions; the mean values of all meteorological 

conditions shown in Table 1 were about the same.

Chicago had the highest number of daily deaths in the summertime for all causes (144 

deaths daily on average) and cause-specific deaths, as listed in Table 1, followed by 

Philadelphia, Detroit and Phoenix. Phoenix had about one third of the daily deaths as 

Chicago, on average (54 deaths per day).

Figure 1 shows the ranking of weather variables in terms of predicting deviations from 

typical daily mortality across the four cities. The exact ranking of variables' importance 

scores varied with cities. Daily maximum apparent temperature had the highest scores 

among all weather variables for Detroit, Philadelphia and Phoenix while daily mean 

temperature apparent temperature lag 2 was identified as the most important variable for 

Chicago. Absolute humidity was classified as the second most important variable for Detroit 

and Philadelphia and the fourth and fifth most important variable for Phoenix and Chicago. 

Among the top six weather variables in four cities, apparent temperature and absolute 

humidity appeared 7 times, versus 4 times each for temperature and barometric pressure, and 

2 times for dew point.
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Figure 2-5 show how both the most important variables and the ranking patterns of variables 

vary with mortality causes and cities. As with all-cause mortality, there were no consistent 

top variable and exact ranking patterns for each category. Surprisingly, barometric pressure 

and absolute humidity were much more likely to be selected as the most important variables 

for seven cause-specific death categories in four cities (12 and 10 times, respectively) than 

dew point, apparent temperature and temperature (3, 1 and 1 times, respectively). Among 

the top six variables in 7 cause categories, absolute humidity, barometric pressure, apparent 

temperature, temperature and dew point appeared 49, 36, 35, 32 and 16 times, respectively.

Table S1 shows models generally perform well when outcome variables have relative larger 

number of daily counts. For example, root mean squared errors of those models for all-cause 

mortality are within 9 to 14% of mean values of daily counts in four cities. Not surprisingly, 

model performance varies with city and causes of mortality. Given the same mortality 

variable, the best model is always identified in Chicago compared to other cities.

Our sensitivity analysis on the degrees of freedom in calculating expected mortality levels 

shows that the most important variables in four cities are robust to the setting of degrees of 

freedom. Ranking patterns of variables slightly vary with degrees of freedom.

4. Discussion

The heat epidemiological literature usually uses a single temperature metric or a 

composition index as a proxy for the complex mixture of weather conditions to which the 

body is exposed. This study presents a novel multivariate analysis of a mixture of weather 

conditions and heat-related health effects by applying a robust statistical learning method: 

the random forests technique. In particular, this analysis ranked the relative importance of 

each weather condition in predicting the deviations from typical daily mortality counts by 

modeling 45 weather variables simultaneously within the framework of random forests. 

Overall, little consistency was observed across cities in the top ranked meteorological 

variables, or even within city, in the top ranked variables across related causes of death. 

Given the high degree of correlation in the variables and the low predictive power of 

temperature for mortality, this may not be surprising. To the extent this is driven by noise in 

the data, application to a larger number of cities may help resolve which variables are most 

consistently and strongly associated with mortality.

However, looked at more broadly, a pattern does seem to emerge. Apparent temperature 

seems the most robust predictor for all-cause mortality across these four cities. Interestingly, 

absolute humidity, a variable not often included in previous epidemiologic studies, is the 

second most common predictor for total mortality, and is the most predictive variable for the 

seven mortality causes, on average. To the best of our knowledge, this study is the first 

application of random forests in heat exposure and health studies. Random forests are 

becoming one of the most widely used statistical learning methods because they can deal 

with a large number of covariates based on a small number of observations, high-order 

interactions and highly correlated covariates (Strobl et al. 2007). However, the method is 

rarely applied in environmental sciences and environmental toxicology studies (Coull et al. 

2011).
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Coull et al. recently applied random forests to assess the associations between pollution 

mixtures from coal-burning power plants and toxicological endpoints. (Coull et al. 2011) 

They summarized two advantages and one disadvantage in applying random forests 

technique to the environmental toxicology field. Their comments are also applicable to the 

heat-health effects analysis in this paper. Random forests can account for non-linear 

associations between a covariate and a health outcome. Random forests also relax the 

assumption of additivity (i.e., the effect of each covariate on an outcome variable is additive) 

which is commonly assumed in popular statistical methods used in heat-health studies, 

including multivariate linear regression, generalized linear regression, and generalized 

additive regression models. This enables us to examine the synergistic effects among either 

mixtures of weather conditions in this work or mixtures of air pollutants in air pollution 

epidemiology/toxicology studies. However, unlike the regression methods mentioned 

earlier, random forests are an algorithm-based statistical method and have the disadvantage 

of not yielding results that allow for traditional statistical inference (e.g., conducting a 

hypothesis test, calculating p values or confidence intervals and estimating regression 

coefficients).

On average, absolute humidity was most frequently selected as one of the top six variables 

for all-cause mortality and mortality attributable to seven mortality causes used in this 

analysis. Much of the heat epidemiology literature uses relative humidity as the metric for 

air moisture, but absolute humidity may be an important metric reflecting physiologically 

stressful heat exposure. For example, (Shaman and Kohn 2009) point out that absolute 

humidity can be more relevant biologically for many organisms than relative humidity. In 

particular, they found that absolute humidity rather than relative humidity is a major driver 

of influenza seasonality in temperate regions. Relative humidity is calculated as the ratio of 

the actual amount of moisture in the air (water vapor pressure) compared to the maximum 

amount of moisture air could hold at a specific temperature (the saturated water vapor 

pressure). Saturation water vapor pressure increases exponentially with increased 

temperature, resulting in potentially large differences of absolute moisture given the same 

relative humidity at different temperatures (Shaman and Kohn, 2009). Absolute humidity is 

a direct measure of actual moisture in the air, and can be calculated in different ways.

Daily maximum apparent temperature is ranked as the first among all weather variables in 

the four cities, except for Chicago, and ranks far higher than the second or third most 

important variable. Apparent temperature and absolute humidity appeared more frequently 

as one of top six variables compared to other weather parameters. These findings suggest 

that apparent temperature may be the best proxy to heat exposures in these three cities. 

Although temperature is ranked as the first in Chicago, the second one is daily mean 

apparent temperature, which has much higher importance score than the third important 

variable. Chicago had daily mean temperature at lag 2 ranked as the most important 

variable, different from other three cities. This might be explained by climate and 

geographic factors (lake effects in Chicago), socio-demographic status and urban 

infrastructure, but understanding this difference would require further study.

Several possible reasons why ranking patterns of weather variables vary with cities and 

mortality causes exist. First, heat-mortality associations are generally small unless they are 
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calculated during heat waves (Barnett et al. 2010), and some uncontrolled factors may 

change the ranking order, particularly given the correlations among the weather variables. 

Second, city-specific factors (climate, geographic and population characteristics factors) 

mentioned earlier may influence these patterns. Third, the underlying mechanisms differ in 

how heat or heat stress may worsen health among people with pre-existing diseases and may 

be associated with excess mortality.

The strength of this study is that we used a powerful statistical learning method as a “multi-

pollutant” (i.e., ‘multi-weather variable’) tool to assess heat-related health effects. Unlike 

generalized linear and additive models, this approach can allow for synergistic effects 

among multiple weather conditions and can handle a large number of highly correlated 

variables.

This study also has limitations. First, this random forests approach does not produce 

estimates of relative mortality risk associated with heat like generalized linear or additive 

models. However, this approach could be used as a screening tool to select which 

meteorological variables can be incorporated into regression models in providing effect 

estimates of heat. Second, this study does not include air pollution because our major 

purpose is to examine which weather conditions are the most important determinants of 

excess mortality, but future analyses could incorporate pollutants, which influence health 

and often covary with weather parameters. Third, random forests are a data driven method, 

and thus the exact ranking patterns may likely change with data set size. However, this 

probably does not affect our major conclusions which mainly draw on the top six variables 

rather than the exact ranking patterns.

5. Conclusions

A multivariate analysis was conducted to investigate the synergistic effects of the mixtures 

of multiple weather variables on heat-related mortality in four US cities using a powerful 

statistical learning method, random forests. Our investigation showed that, although the 

importance ranking of weather variables differed by city and mortality causes, apparent 

temperature appears to be the most robust predictor for all-cause mortality in four cities, and 

absolute humidity is on average most frequently selected as one of top most predictive 

important variables for all-cause and cause-specific mortality across four cities. This is a 

novel finding because absolute humidity could have biological significance for human and 

some diseases. The analysis and findings presented in this paper are applicable to heat-

related epidemiology and toxicology studies, and exposure and risk assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Apparent temperature is a robust parameter for activating heat alerts.

• Absolute humidity should be included in future heat-health studies.

• Random forests can be used to guide choice of weather variables in health 

studies.
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Figure 1. 
Importance of weather variables in predicting deviation from typical daily total mortality 

counts as the response variable for four U.S. cities

Note: 1. Importance of weather variables is quantified as the average percent increase in 

mean squared error; 2. In this analysis, the random forests approach took 20,000 bootstrap 

samples of summertime (May 1st to September 30th) weather and mortality data from one of 

four cities, and each sample results in a tree. For each bootstrap sample, mean squared error 

for a variable was calculated by comparing the predictions from the permuted sample of that 

variable to those from the unpermuted sample of that variable. A higher average percent 

increase in mean squared error for a variable suggests that it is more important in predicting 

outcomes.). 3. This figure shows importance scores of the first 30 variables among all 45 

variables. 4. TMP, temperature; DPT, dew point; AT, apparent temperature; STP, 
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barometric pressure; AH, absolute humidity; min, minimum; max, maximum; me, mean; lag 

1 or 2, one day or two days before deaths occurred.
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Figure 2. 
Importance of weather variables in predicting deviation from typical daily cause-specific 

and all-cause counts as the response variable in Chicago. Otherwise as Figure 1.

Note: CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CVD, 

cardiovascular diseases; MI, myocardial infarction.
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Figure 3. 
Importance of weather variables in predicting deviation from typical daily cause-specific 

and all-cause counts as the response variable in Detroit. Otherwise as Figure 2.
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Figure 4. 
Importance of weather variables in predicting deviation from typical daily cause-specific 

and all-cause counts as the response variable in Philadelphia. Otherwise as Figure 1.
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Figure 5. 
Importance of weather variables in predicting deviation from typical daily cause-specific 

and all-cause counts as the response variable in Phoenix. Otherwise as Figure 1.
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